Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 118
1.
Am J Hum Genet ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38703768

We present shaPRS, a method that leverages widespread pleiotropy between traits or shared genetic effects across ancestries, to improve the accuracy of polygenic scores. The method uses genome-wide summary statistics from two diseases or ancestries to improve the genetic effect estimate and standard error at SNPs where there is homogeneity of effect between the two datasets. When there is significant evidence of heterogeneity, the genetic effect from the disease or population closest to the target population is maintained. We show via simulation and a series of real-world examples that shaPRS substantially enhances the accuracy of polygenic risk scores (PRSs) for complex diseases and greatly improves PRS performance across ancestries. shaPRS is a PRS pre-processing method that is agnostic to the actual PRS generation method, and as a result, it can be integrated into existing PRS generation pipelines and continue to be applied as more performant PRS methods are developed over time.

2.
Int J Pharm ; 657: 124079, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38574955

The application of spectroscopic process analytical technology (PAT) for in-line data collection offers advantages to modern pharmaceutical manufacturing. Partial least squares (PLS) models are the preferred approach for predicting API potency from PAT data, particularly near-infrared (NIR) spectra. However, the calibration burden of PLS models is sometimes considered prohibitive. Pure component approaches, such as iterative optimization technology (IOT), have a reduced calibration burden for PAT applications. The IOT algorithm is dependent on several assumptions, including the harmonization of spectral collection conditions for pure component and mixture spectra. Collecting pure components under identical conditions to mixture spectra does not guarantee accurate predictions, and not all pure components are suitable for individual processing. This IOT assumption must be addressed to facilitate IOT application in PAT systems. In this work, IOT predicted API potency from in-line NIR spectra using combinations of stagnant and dynamic pure component spectra. A small number of mixture samples called a development set guided the selection of representative pure component spectral sets. Several model performance metrics from the development set predictions identified optimal pure component spectral sets for prediction of test sets. The combination of IOT and a development set generated accurate API potency predictions and potentiates the application of IOT in challenging pharmaceutical manufacturing settings. The IOT assumption of similar collection conditions should not be regarded as an assumption, but rather a consideration that the pure component spectral collection conditions should be representative of the mixture spectra to ensure appropriate predictions.

3.
BMJ Open ; 14(4): e073639, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631839

INTRODUCTION: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient's quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients.Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures.IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. METHODS AND ANALYSIS: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. TRIAL REGISTRATION NUMBER: ISRCTN96296121.


Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Colitis, Ulcerative/therapy , Crohn Disease/drug therapy , Inflammatory Bowel Diseases/drug therapy , Multicenter Studies as Topic , Observational Studies as Topic , Precision Medicine , Prospective Studies , Quality of Life
4.
Biotechnol Prog ; 40(2): e3424, 2024.
Article En | MEDLINE | ID: mdl-38178645

The previous research showcased a partial least squares (PLS) regression model accurately predicting cell death percentages using in-line capacitance spectra. The current study advances the model accuracy through adaptive modeling employing a data fusion approach. This strategy enhances prediction performance by incorporating variables from the Cole-Cole model, conductivity and its derivatives over time, and Mahalanobis distance into the predictor matrix (X-matrix). Firstly, the Cole-Cole model, a mechanistic model with parameters linked to early cell death onset, was integrated to enhance prediction performance. Secondly, the inclusion of conductivity and its derivatives over time in the X-matrix mitigated prediction fluctuations resulting from abrupt conductivity changes during process operations. Thirdly, Mahalanobis distance, depicting spectral changes relative to a reference spectrum from a previous time point, improved model adaptability to independent test sets, thereby enhancing performance. The final data fusion model substantially decreased root-mean squared error of prediction (RMSEP) by around 50%, which is a significant boost in prediction accuracy compared to the prior PLS model. Robustness against reference spectrum selection was confirmed by consistent performance across various time points. In conclusion, this study illustrates that the data fusion strategy substantially enhances the model accuracy compared to the previous model relying solely on capacitance spectra.


Apoptosis , Spectrum Analysis , Least-Squares Analysis
5.
Int J Pharm ; 650: 123699, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38081558

Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.


Rivers , Spectroscopy, Near-Infrared , Drug Compounding/methods , Powders/chemistry , Spectroscopy, Near-Infrared/methods , Calibration , Technology, Pharmaceutical/methods , Tablets/chemistry
6.
J Crohns Colitis ; 18(3): 431-445, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37776235

BACKGROUND AND AIMS: Anti-tumour necrosis factor [anti-TNF] therapy is widely used for the treatment of inflammatory bowel disease, yet many patients are primary non-responders, failing to respond to induction therapy. We aimed to identify blood gene expression differences between primary responders and primary non-responders to anti-TNF monoclonal antibodies [infliximab and adalimumab], and to predict response status from blood gene expression and clinical data. METHODS: The Personalised Anti-TNF Therapy in Crohn's Disease [PANTS] study is a UK-wide prospective observational cohort study of anti-TNF therapy outcome in anti-TNF-naive Crohn's disease patients [ClinicalTrials.gov identifier: NCT03088449]. Blood gene expression in 324 unique patients was measured by RNA-sequencing at baseline [week 0], and at weeks 14, 30, and 54 after treatment initiation [total sample size = 814]. RESULTS: After adjusting for clinical covariates and estimated blood cell composition, baseline expression of major histocompatibility complex, antigen presentation, myeloid cell enriched receptor, and other innate immune gene modules was significantly higher in anti-TNF responders vs non-responders. Expression changes from baseline to week 14 were generally of consistent direction but greater magnitude [i.e. amplified] in responders, but interferon-related genes were upregulated uniquely in non-responders. Expression differences between responders and non-responders observed at week 14 were maintained at weeks 30 and 54. Prediction of response status from baseline clinical data, cell composition, and module expression was poor. CONCLUSIONS: Baseline gene module expression was associated with primary response to anti-TNF therapy in PANTS patients. However, these baseline expression differences did not predict response with sufficient sensitivity for clinical use.


Crohn Disease , Humans , Crohn Disease/drug therapy , Crohn Disease/genetics , Gene Regulatory Networks , Tumor Necrosis Factor Inhibitors/therapeutic use , Prospective Studies , Immunotherapy , Tumor Necrosis Factor-alpha
7.
Nat Genet ; 55(11): 1892-1900, 2023 Nov.
Article En | MEDLINE | ID: mdl-37884686

Somatic mutations are hypothesized to play a role in many non-neoplastic diseases. We performed whole-exome sequencing of 1,182 microbiopsies dissected from lesional and nonlesional epidermis from 111 patients with psoriasis to search for evidence that somatic mutations in keratinocytes may influence the disease process. Lesional skin remained highly polyclonal, showing no evidence of large-scale spread of clones carrying potentially pathogenic mutations. The mutation rate of keratinocytes was similarly only modestly affected by the disease. We found evidence of positive selection in previously reported driver genes NOTCH1, NOTCH2, TP53, FAT1 and PPM1D and also identified mutations in four genes (GXYLT1, CHEK2, ZFP36L2 and EEF1A1) that we hypothesize are selected for in squamous epithelium irrespective of disease status. Finally, we describe a mutational signature of psoralens-a class of chemicals previously found in some sunscreens and which are used as part of PUVA (psoralens and ultraviolet-A) photochemotherapy treatment for psoriasis.


Furocoumarins , Psoriasis , Humans , Ficusin/therapeutic use , PUVA Therapy , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/pathology , Furocoumarins/therapeutic use , Mutation
8.
Int J Pharm ; 645: 123354, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37647977

Near-infrared (NIR) spectroscopy is a powerful process analytical tool for monitoring chemical constituents in continuous pharmaceutical processes. However, the density variation introduced when quantitative NIR measurements are performed on powder streams at different flow rates is a potential source of a lack of model robustness. Since different flow rates are often required to meet the production requirements (e.g., during scale-up) of a continuous process, the development of efficient strategies to characterize, understand, and mitigate the impact of powder density on NIR measurements is highly desirable. This study focused on assessing the effect of powder physical variation on NIR by enabling the in-line characterization of powder stream density in a simulated continuous system. The in-line measurements of powder stream density were facilitated through a unique analytical interface to a flowing process. Powder streams delivered at various design levels of flow rate and tube angle were monitored simultaneously by NIR diffuse reflectance spectroscopy, live imaging, and dynamic mass characterization. Statistical analysis and multivariate modeling confirmed powder density as a significant source of spectral variability due to flow rate. Besides providing broader process understanding, results elucidated potential mitigation strategies to facilitate effective continuous process scale-up while ensuring NIR model robustness against density.


Chemistry, Pharmaceutical , Rivers , Chemistry, Pharmaceutical/methods , Powders/chemistry , Calibration , Spectroscopy, Near-Infrared/methods , Technology, Pharmaceutical/methods
9.
Int J Pharm ; 643: 123261, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37479099

Process analytical technology (PAT) is an essential tool within pharmaceutical manufacturing to ensure consistent quality and maintain process control. Near-infrared (NIR) spectroscopy is one of the most popular PAT techniques, particularly for monitoring active pharmaceutical ingredient (API) concentrations. To interpret the spectral outputs of NIR spectroscopy, advanced multivariate models are required. Calibration-free models such as iterative optimization technology (IOT) algorithms are increasingly of interest, due primarily to their reduced material and time burdens. Variable/wavelength selection is a common method to improve prediction performance and robustness for IOT by focusing on spectral regions with the most relevant information. However, currently proposed wavelength selection approaches rely on training sets for optimization, therefore reducing or removing the advantages of IOT over empirical calibration-dependent models. In this work, a true calibration-free wavelength selection method is proposed based on measuring the difference between individual wavelengths of a mixture spectra and the net analyte signals via a wavelength angle mapper (WAM). An extension of the WAM utilizing a spectral window of wavelength instead of individual wavelengths, called SWAM, was also developed. However, the SWAM method does require a small training set to optimize wavelength selection parameters. The WAM and SWAM methods showed similar prediction performance for API in pharmaceutical powder blends when compared against other calibration-dependent models and the base IOT algorithm.


Algorithms , Technology , Powders/chemistry , Spectroscopy, Near-Infrared/methods , Calibration , Least-Squares Analysis , Technology, Pharmaceutical/methods
10.
Biotechnol J ; 18(7): e2200604, 2023 Jul.
Article En | MEDLINE | ID: mdl-37029472

Core fucosylation is a highly prevalent and significant feature of N-glycosylation in therapeutic monoclonal antibodies produced by mammalian cells where its absence (afucosylation) plays a key role in treatment safety and efficacy. Notably, even slight changes in the level of afucosylation can have a considerable impact on the antibody-dependent cell-mediated cytotoxicity. Therefore, implementing control over afucosylation levels is important in upstream manufacturing to maintain consistent quality across batches of product, since standard downstream processing does not change afucosylation. In this review, the influences and strategies to control afucosylation are presented. In particular, there is emphasis on upstream manufacturing culture parameters and media supplementation, as these offer particular advantages as control strategies over alternative approaches such as cell line engineering and chemical inhibitors. The review discusses the relationship between the afucosylation influences and the underlying cellular metabolism to promote increased process understanding. Also, briefly highlighted is the value of empirical and mechanistic models in evaluating and designing control methods for core fucosylation.


Antibodies, Monoclonal , Fucose , Animals , Cricetinae , Antibodies, Monoclonal/metabolism , Fucose/metabolism , Cell Line , Glycosylation , Antibody-Dependent Cell Cytotoxicity , Cricetulus , CHO Cells
11.
Nat Genet ; 55(3): 389-398, 2023 03.
Article En | MEDLINE | ID: mdl-36823319

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Cell Biology , Cells , Disease , Genetic Association Studies , Genetic Pleiotropy , Genetic Association Studies/methods , Humans , Ubiquitination/genetics , RNA Processing, Post-Transcriptional/genetics , Cells/metabolism , Cells/pathology , Drug Repositioning/methods , Drug Repositioning/trends , Disease/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Genome-Wide Association Study , Phenotype , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology
12.
Lancet Gastroenterol Hepatol ; 8(3): 271-286, 2023 03.
Article En | MEDLINE | ID: mdl-36634696

Genomic medicine enables the identification of patients with rare or ultra-rare monogenic forms of inflammatory bowel disease (IBD) and supports clinical decision making. Patients with monogenic IBD frequently experience extremely early onset of treatment-refractory disease, with complex extraintestinal disease typical of immunodeficiency. Since more than 100 monogenic disorders can present with IBD, new genetic disorders and variants are being discovered every year, and as phenotypic expression of the gene defects is variable, adaptive genomic technologies are required. Monogenic IBD has become a key area to establish the concept of precision medicine. Clear guidance and standardised, affordable applications of genomic technologies are needed to implement exome or genome sequencing in clinical practice. This joint British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition guideline aims to ensure that testing resources are appropriately applied to maximise the benefit to patients on a national scale, minimise health-care disparities in accessing genomic technologies, and optimise resource use. We set out the structural requirements for genomic medicine as part of a multidisciplinary team approach. Initiation of genomic diagnostics should be guided by diagnostic criteria for the individual patient, in particular the age of IBD onset and the patient's history, and potential implications for future therapies. We outline the diagnostic care pathway for paediatric and adult patients. This guideline considers how to handle clinically actionable findings in research studies and the impact of consumer-based genomics for monogenic IBD. This document was developed by multiple stakeholders, including UK paediatric and adult gastroenterology physicians, immunologists, transplant specialists, clinical geneticists, scientists, and research leads of UK genetic programmes, in partnership with patient representatives of several IBD and rare disease charities.


Gastroenterology , Inflammatory Bowel Diseases , Humans , Child , Adult , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/therapy , Nutritional Status , Genomics
13.
Biotechnol J ; 18(3): e2200231, 2023 Mar.
Article En | MEDLINE | ID: mdl-36479620

BACKGROUND/AIMS: Previous work developed a quantitative model using capacitance spectroscopy in an at-line setup to predict the dying cell percentage measured from a flow cytometer. This work aimed to transfer the at-line model to monitor lab-scale bioreactors in real-time, waiving the need for frequent sampling and enabling precise controls. METHODS AND RESULTS: Due to the difference between the at-line and in-line capacitance probes, direct application of the at-line model resulted in poor accuracy and high prediction bias. A new model with a variable range and offering similar spectral shape across all probes was first constructed, improving prediction accuracy. Moreover, the global calibration method included the variance of different probes and scales in the model, reducing prediction bias. External parameter orthogonalization, a preprocessing method, also mitigated the interference from feeding, which further improved model performance. The root-mean-square error of prediction of the final model was 6.56% (8.42% of the prediction range) with an R2 of 92.4%. CONCLUSION: The culture evolution trajectory predicted by the in-line model captured the cell death and alarmed cell death onset earlier than the trypan blue exclusion test. Additionally, the incorporation of at-line spectra following orthogonal design into the calibration set was shown to generate calibration models that are more robust than the calibration models constructed using the in-line spectra only. This is advantageous, as at-line spectral collection is easier, faster, and more material-sparing than in-line spectra collection.


Bioreactors , Cell Culture Techniques , Animals , Cell Culture Techniques/methods , Spectrum Analysis , Cell Death , Electric Capacitance , Mammals , Calibration
14.
AAPS J ; 24(4): 82, 2022 07 12.
Article En | MEDLINE | ID: mdl-35821538

Near-infrared (NIR) spectroscopy has become an important process analytical technology (PAT) for monitoring and implementing control in continuous manufacturing (CM) schemes. However, NIR requires complex multivariate models to properly extract the relevant information and the traditional model of choice, partial least squares, can be unfavorable on account of its high material and time investments for generating calibrations. To account for this, pure component-based approaches have been gaining attention due to their higher flexibility and ease of development. In the present study, the application of two pure component approaches, classical least squares (CLS) models and iterative optimization technology (IOT) algorithms, to pharmaceutical powder blends in a continuous feed frame was considered. The approaches were compared from both a model performance and practical implementation perspective. IOT were found to demonstrate superior performance in predicting drug content compared to CLS. The practical implementation of each modelling approach was also given consideration.


Spectroscopy, Near-Infrared , Calibration , Least-Squares Analysis , Powders/chemistry , Spectroscopy, Near-Infrared/methods
16.
Nat Genet ; 54(3): 251-262, 2022 03.
Article En | MEDLINE | ID: mdl-35288711

The resolution of causal genetic variants informs understanding of disease biology. We used regulatory quantitative trait loci (QTLs) from the BLUEPRINT, GTEx and eQTLGen projects to fine-map putative causal variants for 12 immune-mediated diseases. We identify 340 unique loci that colocalize with high posterior probability (≥98%) with regulatory QTLs and apply Bayesian frameworks to fine-map associations at each locus. We show that fine-mapping credible sets derived from regulatory QTLs are smaller compared to disease summary statistics. Further, they are enriched for more functionally interpretable candidate causal variants and for putatively causal insertion/deletion (INDEL) polymorphisms. Finally, we use massively parallel reporter assays to evaluate candidate causal variants at the ITGA4 locus associated with inflammatory bowel disease. Overall, our findings suggest that fine-mapping applied to disease-colocalizing regulatory QTLs can enhance the discovery of putative causal disease variants and enhance insights into the underlying causal genes and molecular mechanisms.


Genome-Wide Association Study , Quantitative Trait Loci , Bayes Theorem , Causality , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
17.
Int J Pharm ; 614: 121463, 2022 Feb 25.
Article En | MEDLINE | ID: mdl-35026311

As continuous manufacturing (CM) processes are developed, process analytical technology (PAT) via NIR spectroscopy has become an integral tool in process monitoring. NIR spectroscopy requires the deployment of complex multivariate models to extract the relevant information. The model of choice for the pharmaceutical industry is Partial Least Squares (PLS). However, the development of PLS can be burdensome due to the time and resource intensive requirements of calibration. To overcome this challenge, calibration-free/minimal calibration approaches have become of increasing interest. Iterative optimization technology (IOT) algorithms are a favorable calibration-free/minimal calibration approach with only the requirement of pure component spectra for successful active pharmaceutical ingredient (API) quantification. IOT algorithms were utilized to monitor potency trends (qualitative) and API content (quantitative) in a CM system and compared to a traditional PLS model. To overcome the reduced prediction performance of IOT during non-steady state conditions, a novel wavelength method based on variable importance in projection scores was employed. Overall, the success and value of IOT algorithms for application in CM settings was demonstrated.


Spectroscopy, Near-Infrared , Technology , Algorithms , Calibration , Least-Squares Analysis , Technology, Pharmaceutical
18.
Int J Pharm ; 615: 121462, 2022 Mar 05.
Article En | MEDLINE | ID: mdl-35026317

Near infrared (NIR) spectroscopy has been widely recognized as a powerful PAT tool for monitoring blend uniformity in continuous manufacturing (CM) processes. However, the dynamic nature of the powder stream and the fast rate at which it moves, compared to batch processes, introduces challenges to NIR quantitative methods for monitoring blend uniformity. For instance, defining the effective sample size interrogated by NIR, selecting the best sampling location for blend monitoring, and ensuring NIR model robustness against influential sources of variability are challenges commonly reported for NIR applications in CM. This article reviews the NIR applications for powder blend monitoring in the continuous manufacturing of solid oral dosage forms, with a particular focus on the challenges, opportunities for method optimization and recent advances with respect three main aspects: effective sample size measured by NIR, probe location and method robustness.


Spectroscopy, Near-Infrared , Technology, Pharmaceutical , Drug Compounding , Powders , Tablets
19.
Biotechnol Prog ; 38(1): e3220, 2022 01.
Article En | MEDLINE | ID: mdl-34676699

Extensive knowledge of Chinese hamster ovary (CHO) cell metabolism is required to improve process productivity and culture performance in biopharmaceutical manufacturing. However, CHO cells show a dynamic metabolism during culturing in batch and fed-batch bioreactors. CHO cell metabolism is generally described as taking place in three stages: exponential growth phase, stationary phase, and death phase. This review aims to summarize the trends of central metabolism for CHO cells during each stage. Additional insights into how culture conditions are related to phase transitions and force metabolic rewiring are provided. Understanding of CHO cell metabolism lends itself to improving culture qualities by, for example, identifying sources of toxic byproducts and pathways for cellular engineering. In summary, this review describes the changes in CHO cell central metabolism over the course of the culture.


Biological Products , Animals , Batch Cell Culture Techniques , Bioreactors , CHO Cells , Cricetinae , Cricetulus
20.
Gastroenterology ; 162(3): 859-876, 2022 03.
Article En | MEDLINE | ID: mdl-34780721

BACKGROUND & AIMS: Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS: To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS: Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION: Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.


Inflammatory Bowel Diseases/classification , Inflammatory Bowel Diseases/genetics , Age of Onset , Antiporters/genetics , Cells, Cultured , Classification , Gene Expression Profiling , Genetic Association Studies , Genotype , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphate/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Macrophages , Metabolomics , Monosaccharide Transport Proteins/genetics , Penetrance , Phenotype , Signal Transduction/genetics
...